1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| from sklearn.model_selection import GridSearchCV from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.tree import DecisionTreeClassifier, export_graphviz def knn_iris_gscv(): """ 用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证 :return: """ iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
transfer = StandardScaler() x_train = transfer.fit_transform(x_train) x_test = transfer.transform(x_test)
estimator = KNeighborsClassifier()
param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]} estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10) estimator.fit(x_train, y_train)
y_predict = estimator.predict(x_test) print("y_predict:\n", y_predict) print("直接比对真实值和预测值:\n", y_test == y_predict)
score = estimator.score(x_test, y_test) print("准确率为:\n", score)
print("最佳参数:\n", estimator.best_params_) print("最佳结果:\n", estimator.best_score_) print("最佳估计器:\n", estimator.best_estimator_) print("交叉验证结果:\n", estimator.cv_results_)
return None
|